Analysis of boundary slip in a flow with an oscillating wall

نویسندگان

  • Joseph John Thalakkottor
  • Kamran Mohseni
چکیده

Molecular dynamics (MD) simulation is used to study slip at the fluid-solid boundary in an unsteady flow based on the Stokes’ second problem. An increase in slip is observed in comparison to the steady flow for shear rates below the critical shear rate of the corresponding steady flow. This increased slip is attributed to fluid inertial forces not represented in a steady flow. An unsteady mathematical model for slip is established, which estimates the increment in slip at the boundary. The model shows that slip is also dependent on acceleration in addition to the shear rate of fluid at the wall. By writing acceleration in terms of shear rate, it is shown that slip at the wall in unsteady flows is governed by the gradient of shear rate and shear rate of the fluid. Nondimensionalizing the model gives a time dependent yet universal curve, independent of wall-fluid properties, which can be used to find the slip boundary condition at the fluid-solid interface based on the information of shear rate, gradient of shear rate of the fluid, and the instant of time during the cycle. A governing nondimensional number, defined as the ratio of phase speed to speed of sound, is identified to help in explaining the mechanism responsible for the transition of slip boundary condition from finite to a perfect slip and determining when this would occur. Phase lag in fluid velocity relative to wall is observed. The lag increases with decreasing time period of wall oscillation and increasing wall hydrophobicity. The phenomenon of hysteresis is seen when looking into the variation of slip velocity as a function of wall velocity and slip velocity as a function of fluid shear rate. The cause for hysteresis is attributed to the unsteady inertial forces of the fluid. The rate of heat generated by viscous shear is compared for an unsteady Stokes’ second problem and simple Couette flow and is shown to be higher for the unsteady flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsteady Magneto Hydro Dynamic Flow of a Second Order Fluid over an Oscillating Sheet with a Second Order Slip Flow Model

Unsteady slip-flow of second grade non-Newtonian electrically conducting fluid over an oscillating sheet has been considered and solved numerically. A second-order slip velocity model is used to predict the flow characteristic past the wall. With the assumption of infinite length in x-direction, velocity of the fluid can be assumed as a function of y and t, hence, with proper variable change pa...

متن کامل

Unsteady boundary layer flow of a Casson fluid past a wedge with wall slip velocity

In this paper an analysis is presented to understand the effect of non–Newtonian rheology, velocity slip at the boundary, thermal radiation, heat absorption/generation and first order chemical reaction on unsteady MHD mixed convective heat and mass transfer of Casson fluid past a wedge in the presence of a transverse magnetic field with variable electrical conductivity. The partial differential...

متن کامل

Simulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model

Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...

متن کامل

Slip Velocity in Flow and Heat Transfer of Non-newtonian Fluids in Microchannels

The steady-state fully-developed laminar flow of non-Newtonian power-law fluids is examined in a circular microchannel with slip boundary condition and under an imposed constant wall heat flux. Effects of slip as well as the hydrodynamic and thermal key parameters on heat transfer and entropy generation are investigated. The results reveal that increasing the Brinkman number and the flow behavi...

متن کامل

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

Effect of slip and variable thermal boundary conditions on hydromagnetic mixed convection flow and heat transfer from a non-linearly stretching ‎surface

The effect of partial slip and temperature dependent fluid properties on the MHD mixed convection flow from a heated, non-linearly stretching surface in the presence of radiation and non-uniform internal heat generation/absorption is investigated. The velocity of the stretching surface was assumed to vary according to power-law form. Thermal transport is analyzed for two types of non-isothermal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013